An ADMM algorithm for solving a proximal bound-constrained quadratic program
نویسنده
چکیده
We consider a proximal operator given by a quadratic function subject to bound constraints and give an optimization algorithm using the alternating direction method of multipliers (ADMM). The algorithm is particularly efficient to solve a collection of proximal operators that share the same quadratic form, or if the quadratic program is the relaxation of a binary quadratic problem.
منابع مشابه
Convergence rate bounds for a proximal ADMM with over-relaxation stepsize parameter for solving nonconvex linearly constrained problems
This paper establishes convergence rate bounds for a variant of the proximal alternating direction method of multipliers (ADMM) for solving nonconvex linearly constrained optimization problems. The variant of the proximal ADMM allows the inclusion of an over-relaxation stepsize parameter belonging to the interval (0, 2). To the best of our knowledge, all related papers in the literature only co...
متن کاملLinear Rate Convergence of the Alternating Direction Method of Multipliers for Convex Composite Programming*
In this paper, we aim to prove the linear rate convergence of the alternating direction method of multipliers (ADMM) for solving linearly constrained convex composite optimization problems. Under a mild calmness condition, which holds automatically for convex composite piecewise linear-quadratic programming, we establish the global Q-linear rate of convergence for a general semi-proximal ADMM w...
متن کاملLinear Rate Convergence of the Alternating Direction Method of Multipliers for Convex Composite Quadratic and Semi-Definite Programming
In this paper, we aim to provide a comprehensive analysis on the linear rate convergence of the alternating direction method of multipliers (ADMM) for solving linearly constrained convex composite optimization problems. Under a certain error bound condition, we establish the global linear rate of convergence for a more general semi-proximal ADMM with the dual steplength being restricted to be i...
متن کاملAn Algorithm Based on Theory of Constraints and Branch and Bound for Solving Integrated Product-Mix-Outsourcing Problem
One of the most important decision making problems in many production systems is identification and determination of products and their quantities according to available resources. This problem is called product-mix. However, in the real-world situations, for existing constrained resources, many companies try to provide some products from external resources to achieve more profits. In this pape...
متن کاملAn Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function
In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1412.8493 شماره
صفحات -
تاریخ انتشار 2014